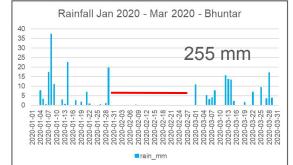
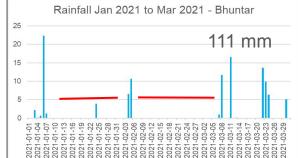
HP-IDP Planning framework for water budgeting

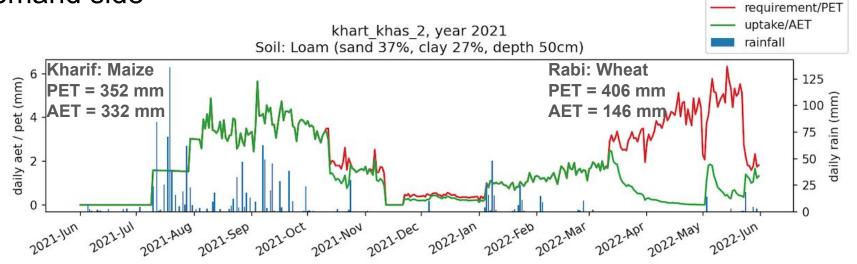

29th August 2024


Key issues

- Traditional crops (maize, wheat),
- Less water requirement, subsistence farming
- Distributed monsoon and post-monsoon rainfall

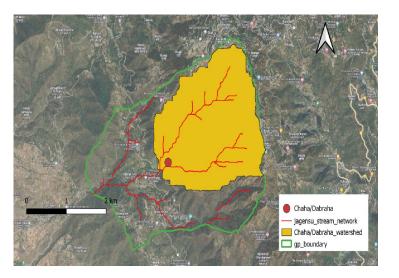
- Shift towards vegetables, high density apples etc. and commercial farming
- Increased water demand at crucial times
- Climate change: erratic monsoons, uncertain winters, stressed summers
- Protective irrigation crucial

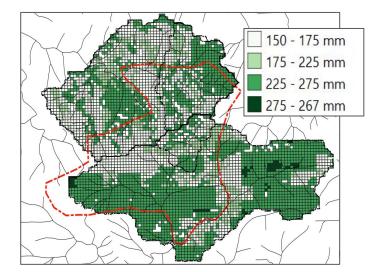
Сгор	Rainfed Yield (quintal per bhiga)	Irrigated Yield (quintal per bhiga)
Wheat	1	2 - 3
Tomatoes	5-10	20-30
Cabbage	10-20	50-70
Apple (High Density)	Can't be done	50 - 60





high incomes \rightarrow high investments \rightarrow high yields \rightarrow irrigation


What is in the HP-IDP pipeline Models and PMU **GP** level Habitation level cropping patterns Demand Crop ET models, LPM per bigha side Farmer level stress, irr. req. Habitation level Baseflow models. Identification of Supply LPM available, streams, sources side seasonality Mapping of streams with agri area Thumb rules, Engineering LPM per bigha, Rs (makovals, CNBs, kuhl Planning of per LPM repair, secondary interventions Secondary-level Watershed mgmt, allocation interventions


Demand side

Ward	Habita tion	HHs	Kharif	Rabi	Total Land in Bigha	LPM rabi
Nog	Payona	8	Makki	wheat, onion,	32	48
Ropa	Ropa	45	Makki	Wheat	270	324
Drun	Thant	9	Makki	Wheat, garlic	27	40.5
Chhuchal	Chhuchal	43	Makki	Wheat, garlic	387	581
Shagnal	Shagnal	26	Makki	Wheat	156	234

Stream	Post monsoon flows (lpm)	Area (ha)	Avg elevation(m)	Forest area (%)	LPM per ha
MA1	22	45	893	7	0.48
KK1	150	163	660	59	0.92
JA1	390	332	1424	67	1.17
KK2	72	55	680	46	1.33
RO1	115	55	1933	70	2.50
RO2	90	27	1829	50	3.33

The

Supply Side

Interventions

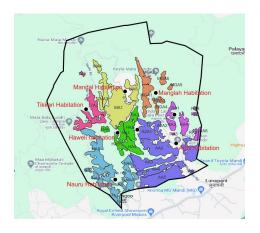
Irrigation requirement during crucial times

1 LPM per bigha
2 / 3 LPM per bigha

Translates to

Rs. 4000 /- for wheat, Rs. 10000/- for garlic

LPM per bigha \rightarrow Rs. per LPM



Proposal

- Planning framework for GP / compartment based on scientific NRM principles
 - Modernize SOPs for climate change
 - Stabilize yields and increase profitability
- Build consortia of academic institutes Hamirpur, IIT Mandi and others)
 - Train state officials and topical studies
 - Maintain and upgrade repository of datasets and models
- Engage community and improve development outcomes
 - Better response to climate change
 - Better maintenance of local assets and data Village Handbook

HP-IDP project provides a launching platform

(NIT

What are the benefits of the proposal

For the project

- Watershed planning
- Design and planning of water harvesting structures
- Crop planning
- Better Allocation of resources
- Profitability and cost-benefit analysis
- Trainable and scalable for GPs

Beyond the project

- Disaster management, peak flows, better engineering norms
- Long term landscape planning
- Convergence of IPH, Forest and Agriculture, Land records
- Tracking data and development outcomes
- Better design and planning of schemes

Thank you

Backup slides

The intervention unit as the unit of design

